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STATISTICAL THEORY OF STRUCTURAL AND THERMODYNAMIC 

PROPERTIES OF MOLECULAR CRYSTALS 

E. T. Bruk-Levinson and V. V. Belov UDC 539.3 

A crystal theory is constructed on the basis of the statistical method of condi- 
tional distributions. A closure procedure is suggested, making it possible to 
take into account the correlation of various orders, and several structural and 
thermodynamic quantities are calculated 

Along with the traditional approach of describing the crystalline structure of matter, 
based on Born's ideas [I], several variations of the statistical theory of crystals have 
been actively pursued lately, based on the apparatus of particle distribution functions 
[2-7]. The latter tendency is particularly due to the trend of characterizing the high- 
temperature region of the crystalline phase, as well as due to the fact that, unlike the 
theory of lattice dynamics, the distribution function formalism is applicable, in principle, 
to all phases of matter, thus creating the prerequisites for describing the region of the 
crystal-disordered phase transition. 

The biggest difficulty of this approach is associated with the necessity of developing 
a closure procedure, without destroying the validity of the original equations in relation 
to any phase. This closure was suggested within the statistical method of conditional dis- 
tributions [8]. It was based on the approximation of integral terms, having the meaning of 
average force potentials, and allowed to provide a unified description of all first-order 
phase transitions [9]. 

It was shown within this closure [7] that, retaining the general features of the 
approach, one can construct for the crystalline phase an analytic theory making it possible 
to calculate a wide set of crystal characteristics. 

Based on a modified closure procedure [i0] and physical ideas used in [7], in the 
present paper we construct a statistical theory of molecular crystals with central pair 
interactions. 
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Fig.  l .  The mean-square displacement 
<u~>.10 ~ (1) and the pa i r  co r re l a to r  
<Us.U p > "i04 (2) as a function of mole- 
cular volume (8 =0.7) (a) and of tem- 
perature (v = 0.95) (b). 

Consider a system of N particles in a volume V, divided into N cells vi = V/N. To 
describe the crystal we use distribution functions F(s), F(s, p), F(s, p, t) [8], determin- 
ing the probability densities of finding, respectively, one, two, and three particles near 
the points qs @ Vs, qp 6Vp, and qt 6 vt, under the condition that in the remaining molecular 
cells vi(i= s, p, t) there is one particle. These functions satisfy the following system 
of integrodifferential equations: 

W [ln F(s) + P%] = O, ( i )  

V~ [ln F (s, p) + ~ (r +msv)] = O, (2) 

V~ [ln F (s, p, t) + ~ (r + r  + ~pr = O, (3) 

whose formal solutions are 

F(s) = c~ exp(--6~8), (4) 

F (s, p) : c~v exp [--6 ( ~ p  -i- ~v)],  (5) 

F (s, p, t) = csv~ exp [--6 (r + ~ + ~v~ + ~sp~)]. (6) 

The quantities ~s, ~sp, and~spt have the meaning of average potential forces acting 
on a given particle by the whole surrounding except particles with subscripts s, s and p, 
and s, p, and t, respectively. They are determined as follows: 

N N N 

q ) s =  X ( D s , f ;  f~sp = X (~sp,i; (~spt = ~ '  (~sPt,f" 
iCs i@s,p i~s,p, t  

The average forces are determined by the expressions: 

Vsms,i : S V~q~i [F(s, i)/F(s)] d(i), 
v i 

Vs~sv,~ = ~ VsqS~i [F(s, p, i)/F(s, p)] d(i),  
vf 

Vsqhpt, i = S VsCs~ [F(s, p, l, i)/F(s, p, t)] d ( i ) .  
v i 

(7) 

(8) 

(9) 

(lO) 

As a preliminary step toward closing the chain (1)-(3) 
we represent the normalization coefficients of the functions 

Csp ---- CsCp~,sp , Cspt ~ CsCpC~sp~, 

(or, which is the same, (4)-(6)) 
(5) and (6) in the form 

(ll) 
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Fig. 2. Pressure as a function of molecular volume and tem- 
perature: i) 0 =0.3; 2) 0 =0.8, the points are the experi- 
mental values of [15]. P, kbar. 

Fig. 3. Isothermal compressibility as a function of temper- 
ature and pressure: I) 0 =0.3; 2) 0.4; 3) 0.5; 4) 0.6, the 
points are experimental values [16]. 

where X are new coefficients, concerning which it is sufficient to state that they are 
positive, and any of the coefficients c i is determined from the normalization condition of 
the single-particle function (4): 

*c7-" l = S exp ( - - ~ i )  d (i). (12) 
v i 

We introduce now new average force potentials 

~ p  = ~sp - -  ~-i In %sp, tPspt = r -7  ~- i  In hspt, (13) 

each  of  which i s  d e t e r m i n e d  by a sum of  form (7 ) ,  w i t h  

Vs~spd = Vs~sp , i ,  Vsq4pt , i  = Vspt,  i. (14) 

We further represent the renormalized potentials in the form 

~ , i  = %,i  + %,~ § %~,i,  (15) 

il)spt, i = q)s,i -I- CPp,i -I- (Pt,i -F o)sp,i + (%t,i -+- O)pt,i -Jr- O3spt,i. (16) 

Expressions (15) and (16) make it possible to construct successive approximations for 
closure of the original chain of equations. Putting successively 

N N 

i=/=s,p i=/=s,p,t 

%p ~ 0, c%pt = 0 (18) 

and using the recurrence relations between functions (4)-(6) 

F ( s ) =  i F ( s ,  p) d(p), F(s, p ) = ~ F ( s ;  p, t) d(t), 
vv vt (19) 

we reach the following systems of closed integral equations for the average force potentials 
and the functions w just introduced: 

exp ('13q%,p) = cp ~ exp [--~ (~p --r + q%)] d (p ) ,  
Vp (20) 

exp (--~q~,p) = Cp ~ exp [--6 (qbsp -- ~p,s -~ ~p + r d (p), 
Vp 
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exp [ - - ~  (C%p,t - -  q~s,t - -  ~p,t)]  = ct ~ exp [--[5 (qs~t + Opt + ~ t  --}- ~opt - -  o~r - -  corn, ~ - -  q~t,~ - -  q~t,p)] d (t). (21)  
v t 

The procedure described can be extended similarly to higher equations of the chain. 

It can be shown [ii] that in any approximation the configuration integral of the sys- 
tem is determined by the expression 

N 

QN= I] (exp(--[Sq~0d(i) .  (22)  
i=1 v~ 

The role of the approximation appears to be that ~i is the solution of the corresponding 
system of nonlinear integral equations; in other words, the potential of the total average 
force is calculated with account of correlations of a given order. 

Since no assumptions were made concerning the material structure in obtaining the closed 
systems of equations, these equations are valid for any phase. 

We use now a milder approximation, the system of equations (20) for describing the 
structural and thermodynamic properties of a molecular crystal with central interactions. 
We rewrite this equation: 

exp (--~q~,v) = j" exp [--[5 (qb~ao --- qop,s)] F (p) d ( p ) .  (23)  
UP 

In the equilibrium state, particle displacements in the crystal from their equilibrium 
positions, the lattice sites, are small in comparison with the interparticle distances. 
Consequently, the single-particle function F(p) must have a sharp peak in the site region, 
and since the right-hand side of (23) contains a multiplier of this function, the main con- 
tribution to the integral is provided by the region near the site. Since the statistical 
scheme under consideration takes into account only single-particle filling of cells, which 
corresponds to and ideal crystal, the region of integration in (23) must be the Wigner-- 
Seitz cell; this is also assumed in what follows, so that it fully reflects the point sym- 
metry of the crystal. 

The presence of functions with sharp peaks under the integral sign justifies the use 
of the Laplace method for multiple integrals (see [12]) in calculating the right-hand side 
of (23). 

In practice, it is necessary to calculate integrals of the form 

I (y, k) ---- S / ( y '  x )exp  [kS (x)] d x ,  (24)  
o 

where ~ is a large positive number, the function S(x) has a maximum at zero, i.e., 

vS(O) = O, vvS(O)  < O, (25)  

and function f(y, x) is continuous in both variables in the region under consideration. 
Under these conditions the following expansion is valid for integral (24) 

I (y, k) ,--" ~-3/2 exp [kS (0) ]~  o~k% -~. (26) 
4=0 

Direct application of this technique while maintaining the first two terms of the asymptotic 
expansion to Eq. (21) makes it possible to obtain the following equations for the static 
part of the average force potential and its first two derivatives at the site (we further 
consider only cubic lattices): 

m~o~ = | ~%b(~ [3-t In [1 - (2c i ) - I  (qbsp(2) _ [3gsp2 _ ATs,p)]}, . V t P s , p - - - - k s p R s p / R s p , .  k s p = E s p - - q b ~ p ,  (27)  
" r s 'P  2 " sp 

2[~bsp - -  ~b~) (28) 

6. ) (2 )  ps o v A % , v  = ~ , .  + [~g~p + g , ,  'P 

Here 
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rf)(4) IV I I I  II 2 I ~sp ---- qhsp 4- 4qhsp/R~v; Ksv = [qhsp] 4- 2 [~sp/Rsp]. (30) 

Rsp i s  the d i s t a n c e  between s i t e s ,  and the  v a l u e s  o f  a l l  q u a n t i t i e s  are  taken  am the s i t e s .  
Expressions (27)-(30) imply, in particular, that maintaining two terms of the asymptotic 
series makes it possible to take into account anharmonicities up to fourth order~ inclusive. 

Finally, for the quantity o, which in the combination Do = % practically satisfies the 
role of a large parameter in expansion (26), we have an equation following from definition 
(7): 

N 

A% g ~  3 3 A%'v" (31) 
p=~s 

By t r a n s l a t i o n a l  i n v a r i a n c e ,  ~ i s  i d e n t i c a l  f o r  a l l  p a r t i c l e s ,  and t h e r e f o r e  we omi t  i t s  
s u b s c r i p t .  

The s o l u t i o n  o f  t h e  s y s t e m  o f  e q u a t i o n s  ( 2 7 ) - ( 2 9 )  d e t e r m i n e s  t h e  s i n g l e  and b i n a r y  
d i s t r i b u t i o n  f u n c t i o n s ,  which  i n  t h e  a p p r o x i m a t i o n  unde r  c o n s i d e r a t i o n  a r e  

F(s) = ([S(ff2zOa/2exp (-- [5~ , 2"~ 2 - " s )  , (32) 

F (s, p) -= (~o/2~)3exp --~ d~p - -%,v - -~pp ,~  4- -~ . ' (33) 

where  u s i s  t h e  p a r t i c l e  d e v i a t i o n  f rom t h e  l a t t i c e  s i t e .  

P u t t i n g  t h e s e  e x p r e s s i o n s  t o g e t h e r  w i t h  t h e  s o l u t i o n s  o f  t h e  s y s t e m  of  e q u a t i o n s  ( 2 7 ) -  
( 2 9 ) ,  ( 3 1 ) ,  one can  d i r e c t l y  c a l c u l a t e  the rmodynamic  q u a n t i t i e s ,  r e p r e s e n t e d  i n  t e rms  o f  
p a i r  i n t e r a c t i o n  p o t e n t i a l s ,  as  w e l l  as  s t r u c t u r a l  f a c t o r s ,  e . g . ,  t h e  m e a n - s q u a r e  p a r t i c l e  
displacement from the site and the displacement correlator of two particles at different 
sites: 

( u,u, ) = ([~)-iE, (34)  
= - -  e I < u,u~ > (r - -  13gf~) e~%~ + (E 3%p ~)r 

f3(~ [1 (2~)-~(~(2)  2 -- -- [~gsp -- A%,p)] (35) sp 

whence it follows that in a cubic lattice particle displacements in different directions 
are independent, while the displacements of two particles are correlated in arbitrary direc- 
tions. 

The results of calculating the quantities <u s2> and <Us'U#> are given in Fig~ !a, b. It 
is seen that the values of the mean-square displacement and of the pair correlator increase 
with both temperature and molecular volume. 

Along with the calculation by means of distribution functions, thermodynamic quantities 
can also be calculated in terms of the system configuration integral 

QN "~ [(2~/~(I) s/2 exp (_~r (36) 
N 

where ~0)= Zf~(0) and the subscript of T(~ is omitted, as well as ~. The free energy is, l S , p ~  ' 

pq=s 

consequently, 

( 3 01n(14-rP(~ F ~ - - N f = N  A 0 - - 3 0 1 n 0 4 -  2 ' (37) 

where A is independent of 0 and v. 

Differentiating the latter expression with respect to the corresponding variables, 
one obtains all the interesting thermodynamic quantities [13]: 

pressure 

0f 
P - -  3v (38) 
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isothermal compressibility 

where R is the nearest neighbor distance, 

the internal energy 

v o o' (39) 

<U~v> ~ - F - - 0 - -  , (40)  
00 

etc. 

the thermal expansion coefficient 

I (v ~)p~--• (41) 

Figures 2 and 3 show, respectively, results of calculating the pressure and the iso- 
thermal compressibility. In the concrete calculations we used the Lennard-Jones potential. 
Comparison with the experimental pressure data makes it possible to claim satisfactory 
agreement. The worsening agreement with increasing volume can, obviously, be explained by 
the increasing role of anharmonicity and by the insufficiency of including two asymptotic 
terms only in this region. The calculated curve for the isothermal compressibility differs 
from experiment by a constant quantity. This deviation can be eliminated by changing the 
parameters of the potential, the accuracy in whose determination is not large. This type 
of fit, however, was not performed in the present work. Similar results are also available 
for other quantities [ii]. 

We stress that there is no real difficulty in including further terms of the asymptotic 
expansion (26), which leads to more complete account of anharmonicity and makes it possible 
to extend the theory to the region immediately adjacent to the melting curve. This has the 
further justification that the original integral equation was successfully applied to study- 
ing the properties of simple liquids [14], and the exact numerical solution [9] manifests 
the crystal-liquid phase transition. 

NOTATION 

F(s), F(s, p), F(s, p, t), one-, two-, and three-particle distribution functions; V s 
~/3qs, ~-I =O=kT/E, reduced temperature; k, Boltzmann constant; ~ and r, parameters of the 
Lennard-Jones potential; T, absolute temperature; v, reduced molecular volume; ~sp ~ ~(lqs -- 
qpI), interaction potential; Cs, Csp, Cspt, normalization factors; ~, ~, average force 
potentials; QN, configuration integral; F, free energy; and E, unit matrix. 
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